
AI-Assisted Personalized Calendars: Enhancing Semester Planning for Students

Szeyi Chan∗, Kaiqi Zhang∗

Northeastern University

Abstract

College students frequently face challenges managing their
coursework effectively due to various academic obligations,
including assignments, readings, exams, and final projects.
This study introduces a personalized calendar organization
tool to enhance student scheduling by learning from human
preferences. In this study, we compared two reinforcement
learning algorithms, Linear Upper Confidence Bound and
Preference Perceptron, to learn from and adapt to user feed-
back. Our approach models the problem as a contextual ban-
dit framework and we evaluate the algorithm based on the
regret minimization speed, a metric indicative of learning ef-
ficiency and user satisfaction. The results demonstrated that
the Preference Perceptron algorithm outperformed the Linear
UCB algorithm, as evidenced by a faster decay in expected
regret values. This suggests that the Preference Perceptron
algorithm can more effectively adapt to user preferences, of-
fering significant implications for developing advanced, per-
sonalized planning tools for educational contexts.

Introduction
The effective management of academic responsibilities
poses a significant challenge for college students, who must
navigate a complex array of coursework tasks, including as-
signments, readings, exams, and final projects. While vari-
ous digital and non-digital planning tools are available, these
tools often rely mainly on user manual inputs. Additionally,
most of these tools use static algorithms that fail to learn
from user interactions, making them less effective over time
as the algorithm cannot adapt to the user’s evolving needs.
The lack of personalization and adaptability in these tools
highlights a significant gap in helping students manage aca-
demic tasks and adapt to individual learning preferences.

This study aims to address existing limitations by com-
paring algorithms tailored for a personalized calendar orga-
nization tool designed to optimize student scheduling. We
adopt a dynamic approach that adapts to individual pref-
erences through learning. By conceptualizing our problem
within the contextual bandit framework, we enable the dy-
namic integration of user-specific data and preferences to
predict optimal calendar options accurately. Specifically, we

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

investigate the efficacy of two reinforcement learning algo-
rithms, Linear Upper Confidence Bound (Linear UCB) and
Preference Perceptron (PP), implemented within this frame-
work. This framework allows the tool to provide personal-
ized suggestions by learning from real-time user feedback.

Our comparative analysis focuses on the performance of
these algorithms based on the speed of regret minimiza-
tion—a metric that measures the efficiency of learning algo-
rithms through their ability to minimize mistakes over time.
This metric correlates with user satisfaction and the overall
effectiveness of the scheduling tool. The two algorithms uti-
lize different user feedback mechanisms in our study. The
Linear UCB algorithm employs a noisy score rating system,
while the PP algorithm uses improved actions provided by
the user. These differences in feedback mechanisms lead to
the different results of our study. The PP algorithm outper-
formed the Linear UCB algorithm, demonstrating a faster
decay in regret values. This suggests that the PP algorithm
is more capable of rapidly adapting to user preferences than
the Linear UCB algorithm, which can be used to develop
more refined and efficient personalized planning tools for
students. The contribution of this study also shows the pos-
sibility of developing more refined and efficient personalized
planning tools to cater to the unique needs of individual stu-
dents in the future.

In this paper, we start by discussing the background of the
multi-armed bandit problem. We then review existing ap-
proaches in related work and proceed to define our problem
formulation within the contextual bandit framework. Our ex-
perimental approach includes a comparative analysis of two
algorithms. The source code for experiments are publicly
available1. We then present our findings from the regret anal-
ysis of both algorithms. Finally, we identify potential areas
for future research.

Background

In this section, we briefly review the background of the
multi-armed bandit problem. We also discuss the applicabil-
ity and limitations of different multi-armed bandit problems.

1https://github.com/SzeyiReinaChan/PersonalizedCalendar



Multi-Armed Bandit Problem (MAB)
In the Multi-Armed Bandit Problem, each round t ∈ T in-
volves the algorithm choosing one of K possible actions, or
“arms”, with the algorithm collecting a reward only for the
selected action, without knowledge of the potential rewards
from the others (Slivkins et al. 2019). Furthermore, the con-
textual bandit problem extends this model by incorporating
additional data—commonly referred to as context data or
features—that help decide which arm to pull and predict the
action that can receive the most reward (Agarwal et al. 2014;
Li et al. 2010). This approach is often used in systems that
provide personalized recommendations or targeted advertis-
ing to enhance the decision-making process, where the algo-
rithm can adapt to the individual characteristics of each user
as “context” during the process (Li et al. 2010).

In the contextual bandit problem, the algorithm actively
collects user feedback, for example, through clicking online
ads. Coactive learning offers an alternative method for gath-
ering feedback. Instead of receiving a simple binary reward
(e.g., clicked or not clicked), the coactive learning process
involves two steps: the algorithm presents an initial action
and then collects an improved or modified response from
the user. This approach allows users to actively participate
in refining the outcome, thereby helping to co-construct a
more effective response (Shivaswamy and Joachims 2015).

The linear contextual bandit problem calculates rewards
through a linear relationship with the context-action pair,
where contextual information is still affected in decision-
making process. Unlike the general contextual bandit prob-
lem, which does not assume a linear relationship between
context and action, the linear model simplifies the analy-
sis of the algorithm’s performance. Consequently, the linear
contextual bandit model requires less data to provide reli-
able estimates, making the analysis process more straight-
forward (Abe, Biermann, and Long 2003).

Related Work
Improving calendar organization through learning from hu-
man preferences has been an active area of research. Pre-
vious studies such as Myers et al. (2007), Das Swain et al.
(2023), and Zaidenberg and Reignier (2011) have explored
various approaches to adapt calendar systems based on user
feedback and preferences. Oh and Smith (2005) further de-
velop this by proposing hybrid frameworks that combine
multiple learning strategies to enhance prediction accuracy
and user satisfaction.

Bayesian models were used in Mynatt and Tullio (2001)
with probabilistic methods to model user attendance and
schedule preferences uncertainties. These models are good
at handling the uncertainties and variabilities in human be-
havior. However, these models were not used in our study
due to the computational demands and the necessity for ex-
tensive historical data to form accurate prior distributions.
Our study’s focus on real-time learning and adaptation from
limited user interactions made Bayesian approaches less
suitable compared to our study’s more straightforward and
computationally efficient linear models.

Mitchell et al. (1994) demonstrates the application of de-

cision trees in adapting to user preferences over time. Deci-
sion trees provide an interpretable framework for decision-
making. Although this decision tree can model more com-
plex behaviors than linear methods, it struggles to adapt to
user preferences in real-time compare to our study. Follow-
ing Gervasio et al. (2005), our study adopts a linear pref-
erence model, which assumes the reward structure as a lin-
ear combination of the observed features and the user’s un-
known preference vector. This model is particularly suited
for contexts where decisions need to be updated dynamically
for personalized scheduling applications.

Furthermore, Q-learning, a form of model-free reinforce-
ment learning, involves learning an action-value function
that gives the expected utility of taking a given action in a
given state and following a fixed policy thereafter. However,
Q-learning is not suitable for our study because the context
does not depend on historical data, and thus, lacks the dy-
namic mechanisms required in our case.

Finally, we decided not to classify our problem as an
MAB problem because MABs typically do not consider the
context or features associated with each action. In contrast,
our study requires a model incorporating user-specific data,
such as individual calendars, and preferences to predict the
most suitable calendar options. Thus, the contextual bandit
framework is a more appropriate choice due to its dynamic
ability to handle such features.

Project Description
Problem Fomulation
In this study, our problem of the calendar scheduling system
was addressed within the context of a multi-armed bandit
problem that incorporates contextual information. This cal-
endar, denoted as set C with E events. These events are cat-
egorized into two types: irrelevant events (ei) and relevant
events (er). Irrelevant events are those pre-existing engage-
ments or appointments already scheduled on the calendar. In
contrast, relevant events are the activities related to school-
work that need to be scheduled, such as homework or read-
ing assignments. Each ei include constraints reflect user pre-
defined preference. Open slots on the calendar are denoted
as -1. Example of a calendar for each user (ui) can be ex-
pressed as follows: Cu = {ei1, ei2, er1, er2,−1,−1...}.

The state (s) of the system, also referred to as the
context, is represented by the calendar that includes only
the irrelevant events at any given time, denoted as s =
{ei1, ei2,−1,−1,−1,−1...}. An action (a) within this sys-
tem is defined as the process of adding all relevant events
to the calendar. In this dynamic environment, the set of fea-
sible actions is determined by the current state or context,
denoted as s. Specifically, an action is considered eligible if
it fills in slots currently unassigned (i.e., slots marked with
“-1”) and adheres to the constraints imposed by the revalent
events. Consequently, the set of available actions at at each
round t is contingent upon the context st at that time. This
implies that the action set may vary at each round, reflecting
the adaptive nature of the decision-making process of con-
textual MAB.

Each pair of state and action, (s, a), is associated with



a feature vector through a mapping function f , where
f(s, a) ∈ Rd. This feature vector provided a multi-
dimensional representation of the state-action pair that cap-
tures essential characteristics relevant to scheduling. In prac-
tical application, we adapted the features outlined by Gerva-
sio et al. to fit our problem context. We employed binary
features, with values corresponding directly to the presence
or absence within event er—assigned as 1 if the feature is
present in er, and 0 otherwise.

The preferences of human users towards these features
are quantitatively expressed through a vector θ ∈ Rd. Each
component of this vector signifies the degree of user prefer-
ence for the corresponding feature in the vector f(s, a).

In our study, we simulate user feedback in two meth-
ods. The first method is through a noisy score rating sys-
tem. Specifically, we model human feedback as distributed
according to a Gaussian distribution, where the Gaussian
noise model captures the variability and imperfections typ-
ically present in human-provided scores. The mean of this
distribution, and thus the expected value of the human
feedback, is given by the linear predictor, expressed as
E[humanfeedback] = x⊤θ, where x = f(s, a). In here, x
represents the feature vector associated with the user interac-
tion, and θ represents the parameter vector that characterizes
the typical user response. The second method of feedback
simulation involves the assumption of improved actions. In
our study, we assume that the reward(s, a) = f(s, a)θ̇ for
the improved actions (ā ∈ A) is greater than or equal to
the action chosen by the algorithm at, formally denoted as
ā⊤θ ≥ a⊤t θ.

The reward function (r) is formulated as r(s, a) = θ ·
f(s, a), where it computes a scalar value indicative of the
overall user satisfaction with the action taken in a given
state. This reward function effectively evaluates how well
the addition of relevant events aligns with human prefer-
ences as quantified by θ.

As mentioned, our problem is modeled as a contextual
multi-armed bandit problem without state transition. In prac-
tice, the state s is randomly generated in each round t, inde-
pendent of previous states or actions to simplify the history
independency in sequential decision-making problems. This
modeling approach allows for the focus to be on selecting
the optimal action (i.e., the scheduling of relevant events)
based on the current state and maximizing the expected to-
tal reward, which, in this scenario, translates to maximizing
user satisfaction.

In practice, our goal is to achieve the maximum pos-
sible total reward over T rounds. Formally expressed as
E
[∑T

t=1 rt,at

]
, where at represents the action that maxi-

mizes the expected payoff at each round t. Equivalently, this
can be viewed as minimizing the regret associated with not
always being able to choose the optimal action due to un-
certainty or incomplete information. Total regret is formally
defined as the difference between the reward accrued by al-
ways choosing the optimal action and the actual reward ac-
crued by the algorithm. The cumulative regret over T rounds

is defined by:

REGT = E

[
T∑

t=1

r(st, a
∗
t )− r(st, at)

]
(1)

where at is the action selected by the algorithm at round
t, and a∗t is the optimal action that would have yielded the
maximum expected reward at round t. Our goal is to mini-
mize total regret, which effectively maximizes total payoff.

Overall, the formulation of our problem sets the ground-
work for developing a calendar scheduling system that can
dynamically and efficiently add relevant events to a calendar
while considering user preferences and pre-existing commit-
ments to enhance overall satisfaction and usability.

Algorithms
In this study, we applied the Linear UCB algorithm and the
PP method to learn users’ preferences based on their feed-
back. We will first detail the Linear UCB algorithm, fol-
lowed by a description of the PP approach utilized in our
research.

Linear UCB

Algorithm 1: LinUCB With Contextual Bandits

1: Input: α ∈ R+

2: for t = 1, 2, . . . , T do
3: Observe features of all action a ∈ At : xt,a ∈ Rd

4: for all a ∈ At do
5: if a is new then then
6: Aa ← λId (d-dimensional identity matrix)
7: ba ← 0d×1 (d-dimensional zero vector)
8: end if
9: θ̂t,a ← A−1

a ba

10: pt,a = θ̂⊤t,axt,a + α
√
x⊤
t,aA

−1
a xt,a

11: end for
12: Choose arm at = argmaxa∈At pa,t with ties broken

arbitrarily, and observe payoff rt
13: Aat ← Aat + xa,tx

⊤
a,t

14: bat
← bat

+ rtxa,t

15: end for

Algorithm 1 performs iterative calculations to optimize
user preferences through the Upper Confidence Bound
(UCB) approach. Initially, we define the exploration param-
eter α as 1+

√
(ln (2/δ)/2) (Li et al. 2010), which balances

the exploration-exploitation trade-off in decision making un-
der uncertainty.

During each round t, the algorithm executes the following
steps to select actions and update rewards:
• Generation of possible calendar sets: Line 3 constructs all

possible calendars (At), representing different potential
calendars, along with the corresponding feature vectors
xt,a for each calendar a.

• Preference estimation: For each possible calendar a, the
algorithm computes the estimated preference vector θ̂t,a



using θ̂t,a ← A−1
a ba, where Aa and ba are dynamically

updated parameters that incorporate observed user feed-
back to refine the estimate of the preference.

• UCB calculation: The main computational step occurs in
Line 10, where the algorithm calculates the Upper Con-
fidence Bound for each possible calendar (a ∈ At). The
first part calculate the estimated reward θ̂⊤t,axt,a, then cal-

culate the uncertainty bonus α
√
x⊤
t,aA

−1
a xt,a. The sum

of these two calculation gives the UCB, which the algo-
rithm uses to select the action with the highest potential
for user satisfaction.

• Reward update: Following the selection of action at by
at = argmaxa∈At

pa,t, the algorithm updates the val-
ues of Aat

and bat
based on the observed reward rt, per-

formed in line 13 and 14.

By iteratively updating the estimates and selections based on
user interactions, Algorithm 1 effectively adapts to changing
user preferences while ensuring a robust exploration of pos-
sible calendars.

Preference Perceptron (PP)

Algorithm 2: Preference Perceptron

1: Initialize θ̂1 ← 0
2: for t = 1 to T do
3: Observe all features xt,a

4: Present at ← argmaxa∈A θ̂⊤t xt,a

5: Obtain feedback āt
6: Update θ̂t+1 ← θ̂t + xt,ā − xt,a

7: end for

During each round t, the algorithm executes the following
steps to select actions and update preferences:

• Action selection: First observes all the possible calendars
(context) xt for round t to determine potential actions in
line 3. Then selecting the action yt that maximizes the
estimated preference based on the current model, calcu-
lated as θ̂⊤t xt,a in line 4.

• Feedback acquisition: Line 5 acquires user feedback āt,
which indicates the one of the calendar that users prefer
of all the possible calendars xt.

• Preference estimation update: To adjust the preference
estimation with the feedback from users, line 6 updates
the preference vector θ̂t+1 using θ̂t+xt,ā−xt,a. This up-
date reduces the discrepancy between predicted and ac-
tual preferences to improve the model’s accuracy.

By iteratively acquiring feedback from users after pre-
senting the possible calendar in every round, Algorithm 2
can effectively adapt to user preferences by updating prefer-
ences to enhance decision-making processes over successive
rounds.

Experiment
We conducted a comparative analysis between Linear UCB
and PP on learning and adapt to users’ preferences. We com-
pared the trend of the regret value and human feedback noise
for algorithm evaluation. To investigate dynamic scheduling
challenges, a simulation environment was developed, mim-
icking a weekly calendar with 21 time slots distributed over
seven days, each day segmented into three time slots: morn-
ing, afternoon, and evening.

Event Constraints and Calendar Simulation
The scheduling constraints differentiate between relevant
and irrelevant events to examine the system’s efficiency in
prioritizing educational activities according to user prefer-
ences. Specifically:
• Relevant Events (er): The simulator schedules ‘home-

work assignments’ and ‘reading book chapter’ events re-
lated to the student’s coursework. These relevant events
required active scheduling into appropriate slots based
on predefined constraints. The scheduling constraints
reflect user preferences before the initial assignment.
‘Homework assignments’ events are restricted to Mon-
day through Thursday, totaling 12 available slots, while
‘reading book chapter’ events can be scheduled in any of
the 21 available slots throughout the week.

• Irrelevant Events (ei): Events such as ‘gym’ and ‘yoga
class’ represent pre-existing fixed appointments in the
user’s calendar and are considered irrelevant to the
coursework. In our simulator, these events are assigned
randomly, possibly including both ei, one of the ei, and
none of the ei. For instance, a ‘gym’ event might occupy
one of the 21 total slots, and a ‘yoga class’ event could fill
one of the remaining 20 slots or not fill any of the slots.
This setup represents the user’s calendar Cu and forms
the initial state s of the user.

After initializing ei, the system determines the placement
of er. The remaining 19 to 21 slots are considered, ensur-
ing that they do not overlap. For example, slots for ’home-
work assignments’ are selected from the non-overlapping
slots within the constrained 12, maintaining a structured yet
randomized placement process.

Each simulation run starts with a calendar randomly
populated with irrelevant events (ei). Two algorithms then
schedule relevant events, considering the available slots and
their constraints. The experimental protocol conducts ten
repetitions, each with simulation rounds of 100, 1, 000, and
10, 000 per algorithm. Initial simulations with fewer rounds
offered limited insights into the algorithms’ long-term per-
formance. Therefore, increasing the number of rounds to
10, 000 enables the algorithms to face various scenarios.
This approach allows the algorithms to adapt to users’
decision-making processes based on continuous feedback
and rewards. It provides the observation of long-term trends
in how these algorithms learn and evolve.

Experimental Results
In our experiment, we initially examined the average regret,
formally defined in Equation 2. This measure quantifies the



Figure 1: Comparison of average regret decay over 10 re-
peats for Linear UCB and PP algorithms.

Figure 2: Regret convergence comparison of PP vs Linear
UCB with convergence threshold of 0.25.

algorithm’s performance over T time steps. In our study, re-
gret refers to the difference between the reward obtained
from the optimal action at and the reward from the action
actually taken at, summed over all time steps and averaged.
This equation quantifies the performance loss incurred by
not selecting the optimal action in each state. The function
r(st, at) denotes the reward for the actual action taken at
time t for the optimal action that could have been taken at
the same time.

AvgREGT =
1

T

T∑
t=1

(r(st, a
∗
t )− r(st, at)) (2)

In general, the result shows that both algorithms per-
formed well when the event constraints and event prefer-
ences were relatively stable and consistent across rounds,
allowing the algorithms to learn and adapt effectively.

Figure 3: Regret convergence of PP algorithm with conver-
gence threshold of 0.01.

Figure 1 shows the result of the average regret for both al-
gorithms across 10,000 rounds over 10 repetitions.It shows
that the average regret for the PP algorithm shows a steeper
decline, implying a more rapid alignment with optimal
choices. In contract, the Linear UCB algorithm shows a
more gradual decline. The graph’s trend lines converge over
time, with the PP algorithm outperforming the Linear UCB
algorithm.

Figure 2 shows the convergence performance of both the
PP and Linear UCB algorithms under a threshold setting of
0.25 across the average value of 10,000 rounds over 10 rep-
etitions. The data shows that the Linear UCB algorithm con-
verges significantly slower than the PP. On average, Linear
UCB requires 33.4 rounds to reach the convergence thresh-
old, whereas the PP converges in just 3.4 rounds. Addition-
ally, Figure 3 shows the convergence behavior of the PP un-
der threshold of 0.01, also across 10 repetitions, where it
takes an average of 155.7 rounds to converge.

Our results showed that the Linear UCB algorithm con-
sistently recorded higher cumulative regret compared to the
PP algorithm throughout the simulation iterations, pointing
to the observation that the PP algorithm was more effec-
tive at balancing exploration and exploitation, adapting more
swiftly to changes in preferences. Although the Linear UCB
algorithm demonstrated adaptability, its performance is be-
hind, indicating that in environments with stable and consis-
tent preferences, the PP strategy tends to outperform.

While the PP algorithm has an initial advantage in learn-
ing rate, Linear UCB might eventually match its perfor-
mance as it continues to refine its model with additional data.
The fast learning capability of the PP algorithm could en-
hance user experience, particularly in settings like our study
on calendar automation. Initially, users might need to inter-
act more with the application to make changes to the pre-
sented actions. Still, this time investment can lead to fu-
ture benefits as the system becomes more autonomous. Con-
versely, although the Linear UCB algorithm might require
less user input in every round, its slower convergence could



delay the realization of automation benefits, possibly result-
ing in users leaving the application before the benefits are
realized. We observed that this shows the importance of con-
sidering both user engagement and the temporal dynamics
of learning in the development and deployment of the algo-
rithms.

Influence of Human Feedback Noise
To assess the influence of human feedback on algorithmic
efficacy, we performed experiments simulating human noise
in the algorithmic decision-making process. For the Linear
UCB algorithm, we experiment using the Gaussian distribu-
tion across three variance levels: 0.1, 1, and 10. The PP algo-
rithm was evaluated under three conditions: with consistent
optimal feedback, with optimal feedback provided 50% of
the time, and without optimal feedback. In this context, “op-
timal” refers to feedback actions that are superior to those
selected by the algorithm. Each algorithm was subjected to
10 repetitions, with each trial consisting of 2000 iterations,
to ensure the reliability of the results.

For the Linear UCB algorithm, a clear inverse relationship
between human noise levels and learning efficiency is ob-
served. As indicated by the upward shift of the curve in Fig-
ure 4, increased noise corresponds to higher regret values,
meaning slower learning. At the lowest noise level (0.1), the
algorithm demonstrates optimal performance with minimal
regret. However, with the introduction of higher noise lev-
els, the learning curve slightly flattens, showing a decrease
in algorithmic efficiency.

In contrast, the result of the PP algorithm shows a diver-
gent response to varying degrees of human noise in Figure 5.
With optimal feedback, it surpasses the Linear UCB algo-
rithm in the lower regret values throughout the iterations.
With optimal feedback available only half the time, the PP
algorithm maintains a steady learning rate, though average
regret values increased, stabilizing around 0.5. In scenarios
when users are not providing any beneficial feedback, the al-
gorithm encounters its greatest regret values, showing a slow
learning efficiency.

This experiment shows the influence of human feedback
noise on each algorithm’s learning behaviors. Comprehend-
ing how feedback affects algorithmic performance is im-
portant for selecting appropriate algorithms that can inte-
grate real-world human input effectively. Specifically, in
our study, when developing calendars that learn from hu-
man preferences, improving their reliability and relevance
in practical applications.

Future work and Conclusion
From our experiments, we observed that using a linear re-
ward format, although effective in reducing storage require-
ments and run runtime, still resulted in slow learning rates
due to the large size of the calendar. To enhance the learn-
ing speed and overall performance of the algorithm in this
calendar-based scheduling system, future work could ex-
plore incorporating a structured hierarchy within the calen-
dar. For instance, categorizing time slots into broader seg-
ments and refining decisions within these categories could
allow the algorithm to handle decisions more efficiently.

Figure 4: Comparison of average regret values with human
noise using the Linear UCB algorithm, calculated over 10
repetitions of 2000 iterations each.



Figure 5: Comparison of average regret values with human
noise using the PP algorithm, calculated over 10 repetitions
of 2000 iterations each.

However, the use of a linear reward model has its limi-
tations. In our study, we assumed that the reward dynamics
are linear; if this assumption does not hold, the derived solu-
tions may be incorrect. Future research could investigate the
validity of this assumption and develop models that capture
more complex reward structures.

Additionally, while the algorithms used in our study
are broadly applicable to many general problems, they do
not explicitly accommodate the unique constraints of the
scheduling tasks in our calendar-based question. Future
work could integrate specialized scheduling algorithms that
are cognizant of event constraints, thereby enhancing the
contextual relevance and effectiveness of the solutions.

Lastly, we note that while the PP algorithm can rapidly
learn human preferences, it imposes a greater cognitive load
compared to the Linear UCB approach. To address this,
future research could explore hybrid models that combine
the robust preference learning of PP with the more user-
friendly feedback mechanisms of Linear UCB. Such hy-
brid approaches could potentially optimize both learning ef-
ficiency and user experience.

In conclusion, our investigation examined the perfor-
mance of two algorithms, Linear UCB and PP, within a con-
textual bandit framework tailored for personalized calendar
management. The comparative analysis revealed that the PP
algorithm significantly outperformed Linear UCB in terms
of regret minimization speed, demonstrating its capability to
rapidly adapt to individual user feedback. Our study high-
lights the limitations of traditional static scheduling tools
and underscores the potential of adaptive algorithms in de-
veloping personalized planning tools for students.

References
Abe, N.; Biermann, A. W.; and Long, P. M. 2003. Reinforce-
ment learning with immediate rewards and linear hypothe-
ses. Algorithmica, 37: 263–293.

Agarwal, A.; Hsu, D.; Kale, S.; Langford, J.; Li, L.; and
Schapire, R. 2014. Taming the monster: A fast and simple
algorithm for contextual bandits. In International Confer-
ence on Machine Learning, 1638–1646. PMLR.

Das Swain, V.; Hernandez, J.; Houck, B.; Saha, K.; Suh,
J.; Chaudhry, A.; Cho, T.; Guo, W.; Iqbal, S.; and Czer-
winski, M. P. 2023. Focused Time Saves Nine: Evaluating
Computer–Assisted Protected Time for Hybrid Information
Work. In Proceedings of the 2023 CHI Conference on Hu-
man Factors in Computing Systems, 1–18.

Gervasio, M. T.; Moffitt, M. D.; Pollack, M. E.; Taylor,
J. M.; and Uribe, T. E. 2005. Active preference learning
for personalized calendar scheduling assistance. In Proceed-
ings of the 10th international conference on Intelligent user
interfaces, 90–97.

Li, L.; Chu, W.; Langford, J.; and Schapire, R. E. 2010. A
contextual-bandit approach to personalized news article rec-
ommendation. In Proceedings of the 19th international con-
ference on World wide web, 661–670.



Mitchell, T. M.; Caruana, R.; Freitag, D.; McDermott, J.;
Zabowski, D.; et al. 1994. Experience with a learning per-
sonal assistant. Communications of the ACM, 37(7): 80–91.
Myers, K.; Berry, P.; Blythe, J.; Conley, K.; Gervasio, M.;
McGuinness, D. L.; Morley, D.; Pfeffer, A.; Pollack, M.; and
Tambe, M. 2007. An intelligent personal assistant for task
and time management. AI Magazine, 28(2): 47–47.
Mynatt, E.; and Tullio, J. 2001. Inferring calendar event at-
tendance. In Proceedings of the 6th international conference
on Intelligent user interfaces, 121–128.
Oh, J.; and Smith, S. F. 2005. Calendar Assistants that Learn
Preferences. In AAAI Spring Symposium: Persistent Assis-
tants: Living and Working with AI, 7–13.
Shivaswamy, P.; and Joachims, T. 2015. Coactive learning.
Journal of Artificial Intelligence Research, 53: 1–40.
Slivkins, A.; et al. 2019. Introduction to multi-armed ban-
dits. Foundations and Trends® in Machine Learning, 12(1-
2): 1–286.
Zaidenberg, S.; and Reignier, P. 2011. Reinforcement learn-
ing of user preferences for a ubiquitous personal assistant.
Advances in reinforcement learning, 59–80.


